百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术流 > 正文

详解Linux操作系统学习之文件系统(代码解析)

citgpt 2024-07-15 15:18 8 浏览 0 评论

一. 前言

本节开始将分析Linux的文件系统。Linux一切皆文件的思想可谓众所周知,而其文件系统又是字符设备、块设备、管道、进程间通信、网络等等的必备知识,因此其重要性可想而知。本文将先介绍文件系统基础知识,然后介绍最重要的结构体inode以及构建于其上的一层层的文件系统。

二. 文件系统基础知识

一切设计均是为了实现需求,因此我们从文件系统需要的基本功能来看看其该如何设计。首先,一个文件系统需要有以下基本要求

详解Linux操作系统学习之文件系统(代码解析)

  • 文件需要让人易于读写,并避免名字冲突等
  • 文件需要易于查找、整理归类
  • 操作系统需要有文档记录功能以便管理

由此,文件系统设计了如下特性:

  • 采取树形结构、文件夹设计
  • 对热点文件进行缓存,便于读写
  • 采用索引结构,便于查找分类
  • 维护一套数据结构用于记录哪些文档正在被哪些任务使用

依此基本设计,我们可以开始慢慢展开看看Linux博大而精神的文件系统。

三. inode结构体和文件系统

3.1 块存储的表示

硬盘中我们以块为存储单元,而在文件系统中,我们需要有一个存储块信息的基本结构体,这就是文件系统的基石inode,其源码如下。inode意为index node,即索引节点。从这个数据结构中我们可以看出,inode 里面有文件的读写权限 i_mode,属于哪个用户 i_uid,哪个组 i_gid,大小是多少 i_size_lo,占用多少个块 i_blocks_lo。另外,这里面还有几个与文件相关的时间。i_atime 即 access time,是最近一次访问文件的时间;i_ctime 即 change time,是最近一次更改 inode 的时间;i_mtime 即 modify time,是最近一次更改文件的时间。

/*
 * Structure of an inode on the disk
 */
struct ext4_inode {
    __le16	i_mode;		/* File mode */
    __le16	i_uid;		/* Low 16 bits of Owner Uid */
    __le32	i_size_lo;	/* Size in bytes */
    __le32	i_atime;	/* Access time */
    __le32	i_ctime;	/* Inode Change time */
    __le32	i_mtime;	/* Modification time */
    __le32	i_dtime;	/* Deletion Time */
    __le16	i_gid;		/* Low 16 bits of Group Id */
    __le16	i_links_count;	/* Links count */
    __le32	i_blocks_lo;	/* Blocks count */
    __le32	i_flags;	/* File flags */
......
    __le32	i_block[EXT4_N_BLOCKS];/* Pointers to blocks */
......
};

#define EXT4_NDIR_BLOCKS 12
#define EXT4_IND_BLOCK EXT4_NDIR_BLOCKS
#define EXT4_DIND_BLOCK (EXT4_IND_BLOCK + 1)
#define EXT4_TIND_BLOCK (EXT4_DIND_BLOCK + 1)
#define EXT4_N_BLOCKS (EXT4_TIND_BLOCK + 1)

这里我们需要重点关注一下i_block,该成员变量实际存储了文件内容的每一个块。在ext2和ext3格式的文件系统中,我们用前12个块存放对应的文件数据,每个块4KB,如果文件较大放不下,则需要使用后面几个间接存储块来保存数据,下图很形象的表示了其存储原理。

该存储结构带来的问题是对于大型文件,我们需要多次调用才可以访问对应块的内容,因此访问速度较慢。为此,ext4提出了新的解决方案:Extents。简单的说,Extents以一个树形结构来连续存储文件块,从而提高访问速度,大致结构如下图所示。

主要结构体为节点ext4_extent_header,eh_entries 表示这个节点里面有多少项。这里的项分两种:

  • 如果是叶子节点,这一项会直接指向硬盘上的连续块的地址,我们称为数据节点 ext4_extent;
  • 如果是分支节点,这一项会指向下一层的分支节点或者叶子节点,我们称为索引节点 ext4_extent_idx。这两种类型的项的大小都是 12 个 byte。

如果文件不大,inode 里面的 i_block 中,可以放得下一个 ext4_extent_header 和 4 项 ext4_extent。所以这个时候,eh_depth 为 0,也即 inode 里面的就是叶子节点,树高度为 0。如果文件比较大,4 个 extent 放不下,就要分裂成为一棵树,eh_depth>0 的节点就是索引节点,其中根节点深度最大,在 inode 中。最底层 eh_depth=0 的是叶子节点。除了根节点,其他的节点都保存在一个块 4k 里面,4k 扣除 ext4_extent_header 的 12 个 byte,剩下的能够放 340 项,每个 extent 最大能表示 128MB 的数据,340 个 extent 会使你表示的文件达到 42.5GB。这已经非常大了,如果再大,我们可以增加树的深度。

/*
 * Each block (leaves and indexes), even inode-stored has header.
 */
struct ext4_extent_header {
    __le16	eh_magic;	/* probably will support different formats */
    __le16	eh_entries;	/* number of valid entries */
    __le16	eh_max;		/* capacity of store in entries */
    __le16	eh_depth;	/* has tree real underlying blocks? */
    __le32	eh_generation;	/* generation of the tree */
};

/*
 * This is the extent on-disk structure.
 * It's used at the bottom of the tree.
 */
struct ext4_extent {
    __le32  ee_block;  /* first logical block extent covers */
    __le16  ee_len;    /* number of blocks covered by extent */
    __le16  ee_start_hi;  /* high 16 bits of physical block */
    __le32  ee_start_lo;  /* low 32 bits of physical block */
};

/*
 * This is index on-disk structure.
 * It's used at all the levels except the bottom.
 */
struct ext4_extent_idx {
    __le32  ei_block;  /* index covers logical blocks from 'block' */
    __le32  ei_leaf_lo;  /* pointer to the physical block of the next *
         * level. leaf or next index could be there */
    __le16  ei_leaf_hi;  /* high 16 bits of physical block */
    __u16  ei_unused;
};

由此,我们可以通过inode来表示一系列地块,从而构成了一个文件。在硬盘上,通过一系列的inode,我们可以存储大量的文件。但是我们尚需要一种方式去存储和管理inode,这就是位图。同样的,我们会用块位图去管理块的信息。如下所示为创建inode的过程中对位图的访问,我们需要找出下一个0位所在,即空闲inode的位置。

struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
             umode_t mode, const struct qstr *qstr,
             __u32 goal, uid_t *owner, __u32 i_flags,
             int handle_type, unsigned int line_no,
             int nblocks)
{
......
    inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
......
    ino = ext4_find_next_zero_bit((unsigned long *)
                inode_bitmap_bh->b_data,
                EXT4_INODES_PER_GROUP(sb), ino);
......
}

更多Linux内核视频教程文档免费领取后台私信【内核】自行获取。

学习网站:

Linux内核源码/内存调优/文件系统/进程管理/设备驱动/网络协议栈-学习视频教程-腾讯课堂

3.2 文件系统的格式

inode和块是文件系统的最小组成单元,在此之上还有多级系统,大致有如下这些:

  • 块组:存储一块数据的组成单元,数据结构为ext4_group_desc。这里面对于一个块组里的 inode 位图 bg_inode_bitmap_lo、块位图 bg_block_bitmap_lo、inode 列表 bg_inode_table_lo均有相应的定义。一个个块组,就基本构成了我们整个文件系统的结构。
  • 块组描述符表:多个块组的描述符构成的表
  • 超级块:对整个文件系统的情况进行描述,即ext4_super_block,存储全局信息,如整个文件系统一共有多少 inode:s_inodes_count;一共有多少块:s_blocks_count_lo,每个块组有多少 inode:s_inodes_per_group,每个块组有多少块:s_blocks_per_group 等。
  • 引导块:对于整个文件系统,我们需要预留一块区域作为引导区用于操作系统的启动,所以第一个块组的前面要留 1K,用于启动引导区。

超级块和块组描述符表都是全局信息,而且这些数据很重要。如果这些数据丢失了,整个文件系统都打不开了,这比一个文件的一个块损坏更严重。所以,这两部分我们都需要备份,但是采取不同的策略。

  • 默认策略:在每个块中均保存一份超级块和块组描述表的备份
  • sparse_super策略:采取稀疏存储的方式,仅在块组索引为 0、3、5、7 的整数幂里存储。
  • Meta Block Groups策略:我们将块组分为多个元块组(Meta Block Groups),每个元块组里面的块组描述符表仅仅包括自己的内容,一个元块组包含 64 个块组,这样一个元块组中的块组描述符表最多 64 项。这种做法类似于merkle tree,可以在很大程度上优化空间。

3.3 目录的存储格式

为了便于文件的查找,我们必须要有索引,即文件目录。其实目录本身也是个文件,也有 inode。inode 里面也是指向一些块。和普通文件不同的是,普通文件的块里面保存的是文件数据,而目录文件的块里面保存的是目录里面一项一项的文件信息。这些信息我们称为 ext4_dir_entry。这里有两个版本,第二个版本 ext4_dir_entry_2 是将一个 16 位的 name_len,变成了一个 8 位的 name_len 和 8 位的 file_type。

struct ext4_dir_entry {
    __le32  inode;      /* Inode number */
    __le16  rec_len;    /* Directory entry length */
    __le16  name_len;    /* Name length */
    char  name[EXT4_NAME_LEN];  /* File name */
};
struct ext4_dir_entry_2 {
    __le32  inode;      /* Inode number */
    __le16  rec_len;    /* Directory entry length */
    __u8  name_len;    /* Name length */
    __u8  file_type;
    char  name[EXT4_NAME_LEN];  /* File name */
};

在目录文件的块中,最简单的保存格式是列表,就是一项一项地将 ext4_dir_entry_2 列在哪里。每一项都会保存这个目录的下一级的文件的文件名和对应的 inode,通过这个 inode,就能找到真正的文件。第一项是“.”,表示当前目录,第二项是“…”,表示上一级目录,接下来就是一项一项的文件名和 inode。有时候,如果一个目录下面的文件太多的时候,我们想在这个目录下找一个文件,按照列表一个个去找太慢了,于是我们就添加了索引的模式。如果在 inode 中设置 EXT4_INDEX_FL 标志,则目录文件的块的组织形式将发生变化,变成了下面定义的这个样子:

struct dx_root
{
    struct fake_dirent dot;
    char dot_name[4];
    struct fake_dirent dotdot;
    char dotdot_name[4];
    struct dx_root_info
    {
      __le32 reserved_zero;
      u8 hash_version;
      u8 info_length; /* 8 */
      u8 indirect_levels;
      u8 unused_flags;
    }
    info;
    struct dx_entry  entries[0];
};

当前目录和上级目录不变,文件列表改用dx_root_info结构体,其中最重要的成员变量是 indirect_levels,表示间接索引的层数。索引项由结构体 dx_entry表示,本质上是文件名的哈希值和数据块的一个映射关系。

struct dx_entry
{
    __le32 hash;
    __le32 block;
};

如果我们要查找一个目录下面的文件名,可以通过名称取哈希。如果哈希能够匹配上,就说明这个文件的信息在相应的块里面。然后打开这个块,如果里面不再是索引,而是索引树的叶子节点的话,那里面还是 ext4_dir_entry_2 的列表,我们只要一项一项找文件名就行。通过索引树,我们可以将一个目录下面的 N 多的文件分散到很多的块里面,可以很快地进行查找。

3.4 软链接和硬链接的存储格式

软链接和硬链接也是文件的一种,可以通过如下命令创建。ln -s 创建的是软链接,不带 -s 创建的是硬链接。

ln [参数][源文件或目录][目标文件或目录]

硬链接与原始文件共用一个 inode ,但是 inode 是不跨文件系统的,每个文件系统都有自己的 inode 列表,因而硬链接是没有办法跨文件系统的。而软链接不同,软链接相当于重新创建了一个文件。这个文件也有独立的 inode,只不过打开这个文件看里面内容的时候,内容指向另外的一个文件。这就很灵活了。我们可以跨文件系统,甚至目标文件被删除了链接文件也依然存在,只不过指向的文件找不到了而已。

四. 总结

本文主要从文件系统的设计角度出发,逐步分析了inode和基于inode的ext4文件系统结构和主要组成部分,下面引用极客时间中的一张图作为总结。

相关推荐

js中arguments详解

一、简介了解arguments这个对象之前先来认识一下javascript的一些功能:其实Javascript并没有重载函数的功能,但是Arguments对象能够模拟重载。Javascrip中每个函数...

firewall-cmd 常用命令

目录firewalldzone说明firewallzone内容说明firewall-cmd常用参数firewall-cmd常用命令常用命令 回到顶部firewalldzone...

epel-release 是什么

EPEL-release(ExtraPackagesforEnterpriseLinux)是一个软件仓库,它为企业级Linux发行版(如CentOS、RHEL等)提供额外的软件包。以下是关于E...

FullGC详解  什么是 JVM 的 GC
FullGC详解 什么是 JVM 的 GC

前言:背景:一、什么是JVM的GC?JVM(JavaVirtualMachine)。JVM是Java程序的虚拟机,是一种实现Java语言的解...

2024-10-26 08:50 citgpt

使用Spire.Doc组件利用模板导出Word文档
  • 使用Spire.Doc组件利用模板导出Word文档
  • 使用Spire.Doc组件利用模板导出Word文档
  • 使用Spire.Doc组件利用模板导出Word文档
  • 使用Spire.Doc组件利用模板导出Word文档
跨域(CrossOrigin)

1.介绍  1)跨域问题:跨域问题是在网络中,当一个网络的运行脚本(通常时JavaScript)试图访问另一个网络的资源时,如果这两个网络的端口、协议和域名不一致时就会出现跨域问题。    通俗讲...

微服务架构和分布式架构的区别

1、含义不同微服务架构:微服务架构风格是一种将一个单一应用程序开发为一组小型服务的方法,每个服务运行在自己的进程中,服务间通信采用轻量级通信机制(通常用HTTP资源API)。这些服务围绕业务能力构建并...

深入理解与应用CSS clip-path 属性
深入理解与应用CSS clip-path 属性

clip-pathclip-path是什么clip-path 是一个CSS属性,允许开发者创建一个剪切区域,从而决定元素的哪些部分可见,哪些部分会被隐...

2024-10-25 11:51 citgpt

HCNP Routing&Switching之OSPF LSA类型(二)
  • HCNP Routing&Switching之OSPF LSA类型(二)
  • HCNP Routing&Switching之OSPF LSA类型(二)
  • HCNP Routing&Switching之OSPF LSA类型(二)
  • HCNP Routing&Switching之OSPF LSA类型(二)
Redis和Memcached的区别详解
  • Redis和Memcached的区别详解
  • Redis和Memcached的区别详解
  • Redis和Memcached的区别详解
  • Redis和Memcached的区别详解
Request.ServerVariables 大全

Request.ServerVariables("Url")返回服务器地址Request.ServerVariables("Path_Info")客户端提供的路...

python操作Kafka

目录一、python操作kafka1.python使用kafka生产者2.python使用kafka消费者3.使用docker中的kafka二、python操作kafka细...

Runtime.getRuntime().exec详解

Runtime.getRuntime().exec详解概述Runtime.getRuntime().exec用于调用外部可执行程序或系统命令,并重定向外部程序的标准输入、标准输出和标准错误到缓冲池。...

promise.all详解 promise.all是干什么的
promise.all详解 promise.all是干什么的

promise.all详解promise.all中所有的请求成功了,走.then(),在.then()中能得到一个数组,数组中是每个请求resolve抛出的结果...

2024-10-24 16:21 citgpt

Content-Length和Transfer-Encoding详解
  • Content-Length和Transfer-Encoding详解
  • Content-Length和Transfer-Encoding详解
  • Content-Length和Transfer-Encoding详解
  • Content-Length和Transfer-Encoding详解

取消回复欢迎 发表评论: