百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术流 > 正文

Linux文件系统性能调优《参数优化详解》

citgpt 2024-07-15 15:20 10 浏览 0 评论

由于各种的I/O负载情形各异,Linux系统中文件系统的缺省配置一般来说都比较中庸,强调普遍适用性。然而在特定应用下,这种配置往往在I/O 性能方面不能达到最优。因此,如果应用对I/O性能要求较高,除了采用性能更高的硬件(如磁盘、HBA卡、CPU、MEM等)外,我们还可以通过对文件系统进行性能调优,来获得更高的I/O性能提升。总的来说,主要可以从三个方面来做工作:

1、Disk相关参数调优

Linux文件系统性能调优《参数优化详解》

2、文件系统本身参数调优

3、文件系统挂载(mount)参数调优

当然,负载情况不同,需要结合理论分析与充分的测试和实验来得到合理的参数。下面以SAS(Serial attached SCSI)磁盘上的EXT3文件系统为例,给出Linux文件系统性能优化的一般方法。请根据自身情况作适合调整,不要生搬硬套。

1、Disk相关参数

1.1 Cache mode:启用WCE=1(Write Cache Enable), RCD=0(Read Cache Disable)模式

sdparm -s WCE=1, RCD=0 -S /dev/sdb

1.2 Linux I/O scheduler算法

经过实验,在重负载情形下,deadline调度方式对squidI/O负载具有更好的性能表现。其他三种为noop(fifo), as, cfq,noop多用于SAN/RAID存储系统,as多用于大文件顺序读写,

cfq适于桌面应用。

echo deadline > /sys/block/sdb/queue/scheduler

1.3 deadline调度参数

对于redhat linux建议 read_expire = 1/2 write_expire,对于大量频繁的小文件I/O负载,应当这两者取较小值。更合适的值,需要通过实验测试得到。

echo 500 > /sys/block/sdb/queue/iosched/read_expire

echo 1000 > /sys/block/sdb/queue/iosched/write_expire

1.4 readahead 预读扇区数

预读是提高磁盘性能的有效手段,目前对顺序读比较有效,主要利用数据的局部性特点。比如在我的系统上,通过实验设置通读256块扇区性能较优。

blockdev --setra 256 /dev/sdb

但这个参数对于随机读则没有作用,在SSD硬盘甚至有害,因此在SSD上需要关闭预读。

1.5 磁盘队列长度

/sys/block/sda/queue/nr_requests 默认只有 128 个队列,可以提高到 512 个。

会更加占用内存,但能更加多的合并读写操作,速度变慢,但能读写更加多的量

2、EXT3文件系统参数

2.1 block size = 4096 (4KB)

mkfs.ext3 -b指定,大的数据块会浪费一定空间,但会提升I/O性能。EXT3文件系统块大小可以为1KB、2KB、4KB。

2.2 inode size

这是一个逻辑概念,即一个inode所对应的文件相应占用多大物理空间。mkfs.ext3 -i指定,可用文件系统文件大小平均值来设定,可减少磁盘寻址和元数据操作时间。

2.3 reserved block

mkfs.ext3 -m指定,缺省为5%,可调小该值以增大部分可用存储空间。

2.4 disable journal

对数据安全要求不高的应用(如web cache),可以关闭日志功能,以提高I/O性能。

tune2fs -O^has_journal /dev/sdb

3、mount参数

3.1 noatime, nodirtime

访问文件目录,不修改访问文件元信息,对于频繁的小文件负载,可以有效提高性能。

3.2 async

异步I/O方式,提高写性能。

3.3 data=writeback (if journal)

日志模式下,启用写回机制,可提高写性能。数据写入顺序不再保护,可能会造成文件系统数据不一致性,重要数据应用慎用。

3.4 barrier=0 (if journal)

barrier=1,可以保证文件系统在日志数据写入磁盘之后才写commit记录,但影响性能。重要数据应用慎用,有可能造成数据损坏。

4、小结

以/dev/sdb为例,优化操作方法如下,参数请自行调整。

sdparm -s WCE=1, RCD=0 -S /dev/sdb

echo deadline > /sys/block/sdb/queue/scheduler

echo 500 > /sys/block/sdb/queue/iosched/read_expire

echo 1000 > /sys/block/sdb/queue/iosched/write_expire

echo 512 > /sys/block/sda/queue/nr_requests

blockdev --setra 256 /dev/sdb

mkfs.ext3 -b 4096 -i 16384 -m 2 /dev/sdb1

tune2fs -O^has_journal /dev/sdb1

mount /dev/sdb1 /cache1 -o defaults,noatime,nodirtime,async,data=writeback,barrier=0 (if with journal)

mount /dev/sdb1 /cache1 -o defaults,noatime,nodirtime,async (if without journal)


关于页面缓存的信息

cat /proc/meminfo

看到。其中的Cached 指用于pagecache的内存大小(diskcache-SwapCache)。随着写入缓存页,Dirty 的值会增加。

一旦开始把缓存页写入硬盘,Writeback的值会增加直到写入结束。 Linux 用pdflush进程把数据从缓存页写入硬盘,查看有多少个pdflush进程

cat /proc/sys/vm/nr_pdflush_threadspdflush的行为受/proc/sys/vm中的参数的控制

/proc/sys/vm/dirty_writeback_centisecs (default 500):

1/100秒, 多长时间唤醒pdflush将缓存页数据写入硬盘。默认5秒唤醒2个(更多个)线程。

如果wrteback的时间长于dirty_writeback_centisecs的时间,可能会出问题。


pdflush的第一件事是读取

/proc/sys/vm/dirty_expire_centiseconds (default 3000)

1/100秒。缓存页里数据的过期时间(旧数据),在下一个周期内被写入硬盘。默认30秒是一个很长的时间。

第二件事是判断内存是否到了要写入硬盘的限额,由参数决定:

/proc/sys/vm/dirty_background_ratio (default 10)

百分值,保留过期页缓存(脏页缓存)的最大值。是以MmeFree+Cached-Mapped的值为基准的

pdflush写入硬盘看两个参数:

1 数据在页缓存中是否超出30秒,如果是,标记为脏页缓存;

2 脏页缓存是否达到工作内存的10%;

以下参数也会影响到pdflush

/proc/sys/vm/dirty_ratio (default 40)

总内存的最大百分比,系统所能拥有的最大脏页缓存的总量。超过这个值,开启pdflush写入硬盘。如果cache增长快于pdflush,那么整个系统在40%的时候遇到I/O瓶颈,所有的I/O都要等待cache被pdflush进硬盘后才能重新开始。

对于有高度写入操作的系统

dirty_background_ratio: 主要调整参数。如果需要把缓存持续的而不是一下子大量的写入硬盘,降低这个值。

dirty_ratio: 第二调整参数。

Swapping参数

/proc/sys/vm/swappiness

默认,linux倾向于从物理内存映射到硬盘缓存,保持硬盘缓存尽可能大。未用的页缓存会被放进swap区。

数值为0,将会避免使用swapping

100,将会尽量使用swapping

少用swapping会增加程序的响应速度;多用swapping将会提高系统的可用性。

如果有大量的写操作,为避免I/O的长时间等待,可以设置:

echo5>/proc/sys/vm/dirtybackgroundratioecho5>/proc/sys/vm/dirtybackgroundratio echo 10 > /proc/sys/vm/dirty_ratio

文件系统数据缓冲需要频繁的内存分配。加大保留内存的值能提升系统速度和稳定。小于8G的内存,保留内存为64M,大于8G的设置为256M

$ echo 65536 > /proc/sys/vm/min_free_kbytes

I/O 调度器

cat /sys/block/[disk]/queue/scheduler

4中调度算法

noop anticipatory deadline [cfq]

deadline : deadline 算法保证对既定的IO请求以最小的延迟时间。

anticipatory: 有个IO发生后,如果又有进程请求IO,则产生一个默认6ms猜测时间,猜测下一个进程请求IO是干什么。这对于随机读取会造成较大的延时。

对数据库应用很糟糕,而对于Web Server等则会表现不错。

cfq: 对每个进程维护一个IO队列,各个进程发来的IO请求会被cfq以轮循方式处理,对每一个IO请求都是公平。适合离散读的应用。

noop: 对所有IO请求都用FIFO队列形式处理。默认IO不会存在性能问题。

改变调度器

$ echo deadline > /sys/block/sdX/queue/scheduler

对于数据库服务器,deadline算法是推荐的。

提高调度器请求队列的

$ echo 4096 > /sys/block/sdX/queue/nr_requests

有大量的读请求,默认的请求队列应付不过来,可以提高这个值。缺点是要牺牲一定的内存。

为了增加连续读取的吞吐量,可以增加预读数据量。预读的实际值是自适应的,所以使用一个较高的值,不会降低小型随机存取的性能。

$ echo 4096 > /sys/block/sdX/queue/read_ahead_kb

如果LINUX判断一个进程在顺序读取文件,那么它会提前读取进程所需文件的数据,放在缓存中。

服务器遇到磁盘写活动高峰,导致请求处理延迟非常大(超过3秒)。通过调整内核参数,将写活动的高峰分布成频繁的多次写,每次写入的数据比较少。这样可以把尖峰的写操作削平成多次写操作。以这种方式执行的效率比较低,因为内核不太有机会组合写操作。但对于繁忙的服务器,写操作将更一致地进行,并将极大地改进交互式性能。

/proc/sys/vm/dirty_ratio

控制文件系统的写缓冲区的大小,单位是百分比,表示占系统内存的百分比,表示当写缓冲使用到系统内存多少的时候,开始向磁盘写出数据。增大之会使用更多系统内存用于磁盘写缓冲,也可以极大提高系统的写性能。但是,当你需要持续、恒定的写入场合时,应该降低其数值。

/proc/sys/vm/dirty_background_ratio

控制文件系统的pdflush进程,在何时刷新磁盘。单位是百分比,表示系统内存的百分比,pdflush用于将内存中的内容和文件系统进行同步,比如说,当一个文件在内存中进行修改,pdflush负责将它写回硬盘.每当内存中的垃圾页(dirty page)超过10%的时候,pdflush就会将这些页面备份回硬盘.增大之会使用更多系统内存用于磁盘写缓冲,也可以极大提高系统的写性能。但是,当你需要持续、恒定的写入场合时,应该降低其数值:

/proc/sys/vm/dirty_writeback_centisecs

控制内核的脏数据刷新进程pdflush的运行间隔。单位是 1/100 秒。缺省数值是500,也就是 5 秒。如果你的系统是持续地写入动作,那么实际上还是降低这个数值比较好,这样可以把尖峰的写操作削平成多次写操作。

如果你的系统是短期地尖峰式的写操作,并且写入数据不大(几十M/次)且内存有比较多富裕,那么应该增大此数值。

该参数的设置应该小于dirty_expire_centisecs,但也不能太小,太小I/O太频繁,反而

使系统性能下降。具体可能需要在生产环境上测试。据说1:6 (dirty_expire_centisecs : dirty_writeback_centisecs )的比例比较好。

/proc/sys/vm/dirty_expire_centisecs

声明Linux内核写缓冲区里面的数据多“旧”了之后,pdflush进程就开始考虑写到磁盘中去。单位是 1/100秒。缺省是 30000,也就是 30 秒的数据就算旧了,将会刷新磁盘。对于特别重载的写操作来说,这个值适当缩小也是好的,但也不能缩小太多,因为缩小太多也会导致IO提高太快。

当然,如果你的系统内存比较大,并且写入模式是间歇式的,并且每次写入的数据不大(比如几十M),那么这个值还是大些的好。

/proc/sys/vm/vfs_cache_pressure

表示内核回收用于directory和inode cache内存的倾向;缺省值100表示内核将根据pagecache和swapcache,把directory和inode cache保持在一个合理的百分比;降低该值低于100,将导致内核倾向于保留directory和inode cache;增加该值超过100,将导致内核倾向于回收directory和inode cache

/proc/sys/vm/min_free_kbytes

表示强制Linux VM最低保留多少空闲内存(Kbytes)。

缺省设置:724(512M物理内存)

/proc/sys/vm/nr_pdflush_threads

表示当前正在运行的pdflush进程数量,在I/O负载高的情况下,内核会自动增加更多的pdflush进程。

/proc/sys/vm/overcommit_memory

指定了内核针对内存分配的策略,其值可以是0、1、2。

0, 表示内核将检查是否有足够的可用内存供应用进程使用;如果有足够的可用内存,内存申请允许;否则,内存申请失败,并把错误返回给应用进程。

1, 表示内核允许分配所有的物理内存,而不管当前的内存状态如何。

2, 表示内核允许分配超过所有物理内存和交换空间总和的内存(参照overcommit_ratio)。

缺省设置:0

/proc/sys/vm/overcommit_ratio

如果overcommit_memory=2,可以过载内存的百分比,通过以下公式来计算系统整体可用内存。系统可分配内存=交换空间+物理内存*overcommit_ratio/100

缺省设置:50(%)

/proc/sys/vm/page-cluster

表示在写一次到swap区的时候写入的页面数量,0表示1页,1表示2页,2表示4页。

缺省设置:3(2的3次方,8页)

/proc/sys/vm/swapiness

表示系统进行交换行为的程度,数值(0-100)越高,越可能发生磁盘交换。

更改:

/etc/sysctl.conf

vm.dirty_ratio = 40

sysctl -p

相关推荐

js中arguments详解

一、简介了解arguments这个对象之前先来认识一下javascript的一些功能:其实Javascript并没有重载函数的功能,但是Arguments对象能够模拟重载。Javascrip中每个函数...

firewall-cmd 常用命令

目录firewalldzone说明firewallzone内容说明firewall-cmd常用参数firewall-cmd常用命令常用命令 回到顶部firewalldzone...

epel-release 是什么

EPEL-release(ExtraPackagesforEnterpriseLinux)是一个软件仓库,它为企业级Linux发行版(如CentOS、RHEL等)提供额外的软件包。以下是关于E...

FullGC详解  什么是 JVM 的 GC
FullGC详解 什么是 JVM 的 GC

前言:背景:一、什么是JVM的GC?JVM(JavaVirtualMachine)。JVM是Java程序的虚拟机,是一种实现Java语言的解...

2024-10-26 08:50 citgpt

使用Spire.Doc组件利用模板导出Word文档
  • 使用Spire.Doc组件利用模板导出Word文档
  • 使用Spire.Doc组件利用模板导出Word文档
  • 使用Spire.Doc组件利用模板导出Word文档
  • 使用Spire.Doc组件利用模板导出Word文档
跨域(CrossOrigin)

1.介绍  1)跨域问题:跨域问题是在网络中,当一个网络的运行脚本(通常时JavaScript)试图访问另一个网络的资源时,如果这两个网络的端口、协议和域名不一致时就会出现跨域问题。    通俗讲...

微服务架构和分布式架构的区别

1、含义不同微服务架构:微服务架构风格是一种将一个单一应用程序开发为一组小型服务的方法,每个服务运行在自己的进程中,服务间通信采用轻量级通信机制(通常用HTTP资源API)。这些服务围绕业务能力构建并...

深入理解与应用CSS clip-path 属性
深入理解与应用CSS clip-path 属性

clip-pathclip-path是什么clip-path 是一个CSS属性,允许开发者创建一个剪切区域,从而决定元素的哪些部分可见,哪些部分会被隐...

2024-10-25 11:51 citgpt

HCNP Routing&Switching之OSPF LSA类型(二)
  • HCNP Routing&Switching之OSPF LSA类型(二)
  • HCNP Routing&Switching之OSPF LSA类型(二)
  • HCNP Routing&Switching之OSPF LSA类型(二)
  • HCNP Routing&Switching之OSPF LSA类型(二)
Redis和Memcached的区别详解
  • Redis和Memcached的区别详解
  • Redis和Memcached的区别详解
  • Redis和Memcached的区别详解
  • Redis和Memcached的区别详解
Request.ServerVariables 大全

Request.ServerVariables("Url")返回服务器地址Request.ServerVariables("Path_Info")客户端提供的路...

python操作Kafka

目录一、python操作kafka1.python使用kafka生产者2.python使用kafka消费者3.使用docker中的kafka二、python操作kafka细...

Runtime.getRuntime().exec详解

Runtime.getRuntime().exec详解概述Runtime.getRuntime().exec用于调用外部可执行程序或系统命令,并重定向外部程序的标准输入、标准输出和标准错误到缓冲池。...

promise.all详解 promise.all是干什么的
promise.all详解 promise.all是干什么的

promise.all详解promise.all中所有的请求成功了,走.then(),在.then()中能得到一个数组,数组中是每个请求resolve抛出的结果...

2024-10-24 16:21 citgpt

Content-Length和Transfer-Encoding详解
  • Content-Length和Transfer-Encoding详解
  • Content-Length和Transfer-Encoding详解
  • Content-Length和Transfer-Encoding详解
  • Content-Length和Transfer-Encoding详解

取消回复欢迎 发表评论: