百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 技术流 > 正文

java中线程同步的几种方法(java线程同步有几种方法)

citgpt 2024-08-01 13:31 10 浏览 0 评论

方法一:使用synchronized关键字

由于java的每个对象都有一个内置锁,当用此关键字修饰方法时, 内置锁会保护整个方法。在调用该方法前,需要获得内置锁,否则就处于阻塞状态。

注: synchronized关键字也可以修饰静态方法,此时如果调用该静态方法,将会锁住整个类。

java中线程同步的几种方法(java线程同步有几种方法)

注:同步是一种高开销的操作,因此应该尽量减少同步的内容。通常没有必要同步整个方法,使用synchronized代码块同步关键代码即可。

同步方法:给一个方法增加synchronized修饰符之后就可以使它成为同步方法,这个方法可以是静态方法和非静态方法,但是不能是抽象类的抽象方法,也不能是接口中的接口方法。

线程在执行同步方法时是具有排它性的。当任意一个线程进入到一个对象的任意一个同步方法时,这个对象的所有同步方法都被锁定了,在此期间,其他任何线程都不能访问这个对象的任意一个同步方法,直到这个线程执行完它所调用的同步方法并从中退出,从而导致它释放了该对象的同步锁之后。在一个对象被某个线程锁定之后,其他线程是可以访问这个对象的所有非同步方法的。

同步块:同步块是通过锁定一个指定的对象,来对同步块中包含的代码进行同步;而同步方法是对这个方法块里的代码进行同步,而这种情况下锁定的对象就是同步方法所属的主体对象自身。如果这个方法是静态同步方法呢?那么线程锁定的就不是这个类的对象了,也不是这个类自身,而是这个类对应的java.lang.Class类型的对象。同步方法和同步块之间的相互制约只限于同一个对象之间,所以静态同步方法只受它所属类的其它静态同步方法的制约,而跟这个类的实例(对象)没有关系。

如果一个对象既有同步方法,又有同步块,那么当其中任意一个同步方法或者同步块被某个线程执行时,这个对象就被锁定了,其他线程无法在此时访问这个对象的同步方法,也不能执行同步块。

synchronized 关键字用于保护共享数据。请大家注意“共享数据”,你一定要分清哪些数据是共享数据

实例:

/**
 * 创建线程
 * @author gcc
 *
 * 2018年3月9日
 */
public class MybanRunnable implements Runnable{
  
    private Bank bank;
     
    public MybanRunnable(Bank bank) {
        this.bank = bank;
    }
    @Override
    public void run() {
        for(int i=0;i<10;i++) {
            bank.save1(100);
            System.out.println("账户余额是---"+bank.getAccount());
        }
         
    }
}


class Bank{
    private int account = 100;
     
    public int getAccount() {
        return account;
    }
    //同步方法
    public synchronized void save(int money) {
        account+=money;
    }
     
    public void save1(int money) {
        //同步代码块
        synchronized(this) {
            account+=money;
        }
         
    }
     
    public void userThread() {
        Bank bank = new Bank();
         
        MybanRunnable my1 = new MybanRunnable(bank);
        System.out.println("线程1");
        Thread th1 = new Thread(my1);
        th1.start();
        System.out.println("线程2");
        Thread th2 = new Thread(my1);
        th2.start();
         
    }         
}

方法二:wait和notify

wait():使一个线程处于等待状态,并且释放所持有的对象的lock。

sleep():使一个正在运行的线程处于睡眠状态,是一个静态方法,调用此方法要捕捉InterruptedException异常。
notify():唤醒一个处于等待状态的线程,注意的是在调用此方法的时候,并不能确切的唤醒某一个等待状态的线程,而是由JVM确定唤醒哪个线程,而且不是按优先级。
Allnotity():唤醒所有处入等待状态的线程,注意并不是给所有唤醒线程一个对象的锁,而是让它们竞争。

方法三:使用特殊域变量volatile实现线程同步

a.volatile关键字为域变量的访问提供了一种免锁机制

b.使用volatile修饰域相当于告诉虚拟机该域可能会被其他线程更新

c.因此每次使用该域就要重新计算,而不是使用寄存器中的值

d.volatile不会提供任何原子操作,它也不能用来修饰final类型的变量

例如: 在上面的例子当中,只需在account前面加上volatile修饰,即可实现线程同步。

            //只给出要修改的代码,其余代码与上同
        class Bank {
            //需要同步的变量加上volatile
            private volatile int account = 100;
  
            public int getAccount() {
                return account;
            }
            //这里不再需要synchronized
            public void save(int money) {
                account += money;
            }
        }

注:多线程中的非同步问题主要出现在对域的读写上,如果让域自身避免这个问题,则就不需要修改操作该域的方法。 用final域,有锁保护的域和volatile域可以避免非同步的问题。

方法四:使用重入锁实现线程同步

在JavaSE5.0中新增了一个java.util.concurrent包来支持同步。 ReentrantLock类是可重入、互斥、实现了Lock接口的锁,它与使用synchronized方法具有相同的基本行为和语义,并且扩展了其能力。

ReenreantLock类的常用方法有:

ReentrantLock() : 创建一个ReentrantLock实例

lock() : 获得锁

unlock() : 释放锁

注:ReentrantLock()还有一个可以创建公平锁的构造方法,但由于能大幅度降低程序运行效率,不推荐使用

private int account = 100;
private ReentrantLock lock = new ReentrantLock();
public int getAccount() {
    return account;
}
//同步方法
public  void save(int money) {
    lock.lock();
    try {
        account+=money;
    } finally {
        lock.unlock();
    } 
}

注:关于Lock对象和synchronized关键字的选择:

a.最好两个都不用,使用一种java.util.concurrent包提供的机制,能够帮助用户处理所有与锁相关的代码。

b.如果synchronized关键字能满足用户的需求,就用synchronized,因为它能简化代码

c.如果需要更高级的功能,就用ReentrantLock类,此时要注意及时释放锁,否则会出现死锁,通常在finally代码释放锁

方法五:使用局部变量来实现线程同步

如果使用ThreadLocal管理变量,则每一个使用该变量的线程都获得该变量的副本,副本之间相互独立,这样每一个线程都可以随意修改自己的变量副本,而不会对其他线程产生影响。

ThreadLocal 类的常用方法

ThreadLocal() : 创建一个线程本地变量

get() : 返回此线程局部变量的当前线程副本中的值

initialValue() : 返回此线程局部变量的当前线程的"初始值"

set(T value) : 将此线程局部变量的当前线程副本中的值设置为value

//只改Bank类,其余代码与上同
        public class Bank{
            //使用ThreadLocal类管理共享变量account
            private static ThreadLocal<Integer> account = new ThreadLocal<Integer>(){
                @Override
                protected Integer initialValue(){
                    return 100;
                }
            };
            public void save(int money){
                account.set(account.get()+money);
            }
            public int getAccount(){
                return account.get();
            }
        }

注:ThreadLocal与同步机制

a.ThreadLocal与同步机制都是为了解决多线程中相同变量的访问冲突问题。

b.前者采用以"空间换时间"的方法,后者采用以"时间换空间"的方式

方法六:使用阻塞队列实现线程同步

前面5种同步方式都是在底层实现的线程同步,但是我们在实际开发当中,应当尽量远离底层结构。 使用javaSE5.0版本中新增的java.util.concurrent包将有助于简化开发。 本小节主要是使用LinkedBlockingQueue<E>来实现线程的同步 LinkedBlockingQueue<E>是一个基于已连接节点的,范围任意的blocking queue。 队列是先进先出的顺序(FIFO),关于队列以后会详细讲解~LinkedBlockingQueue 类常用方法 LinkedBlockingQueue() : 创建一个容量为Integer.MAX_VALUE的LinkedBlockingQueue put(E e) : 在队尾添加一个元素,如果队列满则阻塞 size() : 返回队列中的元素个数 take() : 移除并返回队头元素,如果队列空则阻塞代码实例: 实现商家生产商品和买卖商品的同步

LinkedBlockingQueue 类常用方法

LinkedBlockingQueue() : 创建一个容量为Integer.MAX_VALUE的LinkedBlockingQueue

put(E e) : 在队尾添加一个元素,如果队列满则阻塞

size() : 返回队列中的元素个数

take() : 移除并返回队头元素,如果队列空则阻塞

代码实例:

实现商家生产商品和买卖商品的同步

/**
 * 用阻塞队列实现线程同步 LinkedBlockingQueue的使用
 *
 * @author XIEHEJUN
 *
 */
public class BlockingSynchronizedThread {
    /**
     * 定义一个阻塞队列用来存储生产出来的商品
     */
    private LinkedBlockingQueue<Integer> queue = new LinkedBlockingQueue<Integer>();
    /**
     * 定义生产商品个数
     */
    private static final int size = 10;
    /**
     * 定义启动线程的标志,为0时,启动生产商品的线程;为1时,启动消费商品的线程
     */
    private int flag = 0;

    private class LinkBlockThread implements Runnable {
        @Override
        public void run() {
            int new_flag = flag++;
            System.out.println("启动线程 " + new_flag);
            if (new_flag == 0) {
                for (int i = 0; i < size; i++) {
                    int b = new Random().nextInt(255);
                    System.out.println("生产商品:" + b + "号");
                    try {
                        queue.put(b);
                    } catch (InterruptedException e) {
                        // TODO Auto-generated catch block
                        e.printStackTrace();
                    }
                    System.out.println("仓库中还有商品:" + queue.size() + "个");
                    try {
                        Thread.sleep(100);
                    } catch (InterruptedException e) {
                        // TODO Auto-generated catch block
                        e.printStackTrace();
                    }
                }
            } else {
                for (int i = 0; i < size / 2; i++) {
                    try {
                        int n = queue.take();
                        System.out.println("消费者买去了" + n + "号商品");
                    } catch (InterruptedException e) {
                        // TODO Auto-generated catch block
                        e.printStackTrace();
                    }
                    System.out.println("仓库中还有商品:" + queue.size() + "个");
                    try {
                        Thread.sleep(100);
                    } catch (Exception e) {
                        // TODO: handle exception
                    }
                }
            }
        }
    }

    public static void main(String[] args) {
        BlockingSynchronizedThread bst = new BlockingSynchronizedThread();
        LinkBlockThread lbt = bst.new LinkBlockThread();
        Thread thread1 = new Thread(lbt);
        Thread thread2 = new Thread(lbt);
        thread1.start();
        thread2.start();

    }

}
注:BlockingQueue<E>定义了阻塞队列的常用方法,尤其是三种添加元素的方法,我们要多加注意,当队列满时:
  add()方法会抛出异常
  offer()方法返回false
  put()方法会阻塞

方法七:使用原子变量实现线程同步

需要使用线程同步的根本原因在于对普通变量的操作不是原子的。

那么什么是原子操作呢?原子操作就是指将读取变量值、修改变量值、保存变量值看成一个整体来操作即-这几种行为要么同时完成,要么都不完成。在java的util.concurrent.atomic包中提供了创建了原子类型变量的工具类,使用该类可以简化线程同步。其中AtomicInteger 表可以用原子方式更新int的值,可用在应用程序中(如以原子方式增加的计数器),但不能用于替换Integer;可扩展Number,允许那些处理机遇数字类的工具和实用工具进行统一访问。

AtomicInteger类常用方法:

AtomicInteger(int initialValue) : 创建具有给定初始值的新的

AtomicInteger addAddGet(int dalta) : 以原子方式将给定值与当前值相加

get() : 获取当前值

代码实例:

只改Bank类,其余代码与上面第一个例子同

class Bank {
    private AtomicInteger account = new AtomicInteger(100);
    public AtomicInteger getAccount() {
        return account;
    }
    public void save(int money) {
        account.addAndGet(money);
    }
}

相关推荐

js中arguments详解

一、简介了解arguments这个对象之前先来认识一下javascript的一些功能:其实Javascript并没有重载函数的功能,但是Arguments对象能够模拟重载。Javascrip中每个函数...

firewall-cmd 常用命令

目录firewalldzone说明firewallzone内容说明firewall-cmd常用参数firewall-cmd常用命令常用命令 回到顶部firewalldzone...

epel-release 是什么

EPEL-release(ExtraPackagesforEnterpriseLinux)是一个软件仓库,它为企业级Linux发行版(如CentOS、RHEL等)提供额外的软件包。以下是关于E...

FullGC详解  什么是 JVM 的 GC
FullGC详解 什么是 JVM 的 GC

前言:背景:一、什么是JVM的GC?JVM(JavaVirtualMachine)。JVM是Java程序的虚拟机,是一种实现Java语言的解...

2024-10-26 08:50 citgpt

使用Spire.Doc组件利用模板导出Word文档
  • 使用Spire.Doc组件利用模板导出Word文档
  • 使用Spire.Doc组件利用模板导出Word文档
  • 使用Spire.Doc组件利用模板导出Word文档
  • 使用Spire.Doc组件利用模板导出Word文档
跨域(CrossOrigin)

1.介绍  1)跨域问题:跨域问题是在网络中,当一个网络的运行脚本(通常时JavaScript)试图访问另一个网络的资源时,如果这两个网络的端口、协议和域名不一致时就会出现跨域问题。    通俗讲...

微服务架构和分布式架构的区别

1、含义不同微服务架构:微服务架构风格是一种将一个单一应用程序开发为一组小型服务的方法,每个服务运行在自己的进程中,服务间通信采用轻量级通信机制(通常用HTTP资源API)。这些服务围绕业务能力构建并...

深入理解与应用CSS clip-path 属性
深入理解与应用CSS clip-path 属性

clip-pathclip-path是什么clip-path 是一个CSS属性,允许开发者创建一个剪切区域,从而决定元素的哪些部分可见,哪些部分会被隐...

2024-10-25 11:51 citgpt

HCNP Routing&Switching之OSPF LSA类型(二)
  • HCNP Routing&Switching之OSPF LSA类型(二)
  • HCNP Routing&Switching之OSPF LSA类型(二)
  • HCNP Routing&Switching之OSPF LSA类型(二)
  • HCNP Routing&Switching之OSPF LSA类型(二)
Redis和Memcached的区别详解
  • Redis和Memcached的区别详解
  • Redis和Memcached的区别详解
  • Redis和Memcached的区别详解
  • Redis和Memcached的区别详解
Request.ServerVariables 大全

Request.ServerVariables("Url")返回服务器地址Request.ServerVariables("Path_Info")客户端提供的路...

python操作Kafka

目录一、python操作kafka1.python使用kafka生产者2.python使用kafka消费者3.使用docker中的kafka二、python操作kafka细...

Runtime.getRuntime().exec详解

Runtime.getRuntime().exec详解概述Runtime.getRuntime().exec用于调用外部可执行程序或系统命令,并重定向外部程序的标准输入、标准输出和标准错误到缓冲池。...

promise.all详解 promise.all是干什么的
promise.all详解 promise.all是干什么的

promise.all详解promise.all中所有的请求成功了,走.then(),在.then()中能得到一个数组,数组中是每个请求resolve抛出的结果...

2024-10-24 16:21 citgpt

Content-Length和Transfer-Encoding详解
  • Content-Length和Transfer-Encoding详解
  • Content-Length和Transfer-Encoding详解
  • Content-Length和Transfer-Encoding详解
  • Content-Length和Transfer-Encoding详解

取消回复欢迎 发表评论: